Sample: Life Sciences

Original Abstract

 $Bacillus \cdot anthracis \cdot (B. anthracis) \cdot is \cdot a \cdot gram$ positive bacteria that induces anthrax; and it has two-pathogenic mega-plasmids-that arepX0l and-pX02. Between these-two; although its size is about 1 98Kb, genetic-function of X01 · has · not · been · known · except · for · a · part · called · pat hogenic-island, which includes threetoxin component genes that are-pag, lef ·and·cva. · Proteomic · system · was · used · to · verify · if there was a protein that was controlled by pX01plasmid. By using thermo-sensitive character of pX01plasmid, strain that pX0l was artificially removed. from · B. · anthracis · H9401 (pX0!+/pX02+) · 1 was obtained. Protein-regulation data was obtained by·using·2D-DIGE·system·and·Decyder· software. The 1,728 of proteins had appeared in wild type strain and 1.684 appeared in strain that pX0l plasmid was cured. Among these, 27. proteins had disappeared and 8 proteins appeared by removing pX01 plasmid. In addition, 52. proteins ·were · down · regulated · and · 15 · proteins were up-regulated by removing pX0 1 plasmid. Total 102 proteins ·had been identified by ·MALDI-TOF/TOF, and among them ·were·49·proteins·with unknown functions. ·There ·were · 31 · proteins · identified · as they participated in metabolism, 2 in cellular process, 18 in genetic information processing, and 5 in environmental information processing. Amongthese, 7 proteins were identified as they were anticipated to participate in virulence and pathogenesis. Functions of those in other bacteria based on documents about identified proteins was investigate, and characteristic changes in B. *anthracis* H9041 derivative as pX01 plasmid·curing·was·made·researches. Germination rate of pX01+/pX02+ B. anthracis and pX0 1-/pX02+B. anthracis derivative were different and was ctytotoxic percentage for macrophage. Also, revelation of S100 B protein in host was increased when the host was infected with pX01+/pX02+B. anthracis and pX01-/pX02+ B. anthracis derivative."

Edited Version

Bacillus anthracis is a gram-positive bacterial organism that is responsible for anthrax. This organism has two pathogenic plasmids: pX0l and pX02. The genetic function of pX0l, which consists of approxiniately 198 kb, is not known, except for a region called the "pathogenic island," which includes three genes— pag, lef, and cya—that code for three toxic proteins. A proteomic system of analysis was used to verify the existence of proteins that are controlled by this plasmid. Taking advantage of the thermosensitive character of the pX01 plasmid, reserarchers have been able to remove it from *B* anthracis H9401 (pX01+/pX02+). Protein regulation data were obtained using twodimensional difference gel electrophoresis and Decyder software. A total of 1728 proteins were identified in the wild type strain of this organism and 1684 in the pX0l plasmid. Of these, 27 disappeared and eight appeared when the pX0l plasmid was removed. An additional 52 proteins were downregulated and 15 were up-regulated when this plasmid was removed. A total of 102 proteins have been identified using the matrix- assisted laser desorption ionization/time of flight method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 18 in the processing of genetic information, and five in the processing of extracellular information. another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly in the *B* anthracis derivative H9041. Germiination rates for pX0 1+/pX02+ B anthracis and its pX0 1-/pX02+ derivative were different, but both organisms were cytotoxic in macrophages. It was also revealed that S100B protein levels increased in the host that was infected with pX0I+/pX02+ B anthracis or its pX0I-/pX02+ derivative. (AU: Please add a sentence summarizing your conclusions about these findings.

Published Version

Bacillus anthracis is a gram-positive bacterial organism responsible for anthrax. This organism has two pathogenic plasmids: pX01 and pX02. The genetic function of pX01, which comprises about 198 kb, is not known, except for a region called the pathogenic island, which contains three genes-pag, lef, and cya-that code for three toxic proteins. A 2-D difference gel electrophoresis (2-D DIGE) system was used to verify the existence of proteins controlled by the pX01 plasmid, and protein regulation data were obtained using DeCyder software. A total of 1728 proteins were identified in the wild-type strain of this organism and 1684 in the pX01 plasmid. Twenty-seven of these proteins disappeared and eight appeared when the pX01 plasmid was removed. An additional 52 proteins were downregulated and 15 were upregulated when this plasmid was removed. A total of 102 proteins have been identified using the MALDI-TOF method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 15 in the processing of genetic information, and five in the processing of extracellular information. Another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly the B. anthracis derivative H9041. Bacterial growth differed between pX01+/pX02+ B. anthracis and its pX01-/pX02+ derivative as did the cytotoxicity of macrophages infected by pX01+/pX02+B, anthracis and the pX01pX02+ derivative. We also found that S100B protein levels increased in the host infected with pX01+/pX02+ B. anthracis or its pX01-/pX02+ derivative. These data suggest that the pX01 plasmid plays a key role in the regulation of protein functions in B. anthracis.

ORIGINAL	EDITED	PUBLISHED
Olanzapine is one of the most commonly	The efficacy of olanzapine, which is one of the	The efficacy of olanzapine, which is one of the
used second-generation APDs with reports of	most commonly used second-generation APDs,	most commonly used second-generation APDs,
association between its efficacy and	has been associated with the DRD3 variant	has been associated with the DRD3 variant
DRD3 variant D3Ser9Gly, which has also	D3Ser9Gly, which has also been associated with	D3Ser9Gly, which has also been associated
been associated with antipsychotic efficacy of	the antipsychotic efficacy of risperidone and	with the antipsychotic efficacy of risperidone
risperidone and clozapine. ^{123, 124} However, this	clozapine. ^{123, 124} This relationship has not been	and clozapine. ^{123, 124} This relationship has not
finding was not replicated in Indian patients ¹²⁵	replicated in Indian patients, ¹²⁵ however, which	been replicated in Indian patients, ¹²⁵ however,
suggesting ethnic differences in response.	suggests differences in response among ethnic	which suggests differences in response among
Genetic variance in COMT were also	groups. Genetic variance in COMT has also been	ethnic groups. Genetic variance in COMT has
associated with the efficacy of olanzapine, ¹²⁶	associated with the efficacy of olanzapine, ¹²⁶	also been associated with the efficacy of
as it was observed with other APDs pointing	given the importance of dopamine levels in its	olanzapine, ¹²⁶ given the importance of
towards importance of dopamine levels in	antipsychotic response. Serotonin may also	dopamine levels in its antipsychotic response.
antipsychotic response. In terms of	influence the efficacy of olanzapine, given that	Serotonin may also influence the efficacy of
serotonergic mechanisms, L allele of the 5-	the L allele of 5-HTT LPR ¹²⁷ and several HTR6	olanzapine, given that the L allele of 5-HTT
HTT LPR ¹²⁷ and several HTR6	polymorphisms ¹²⁸ have been associated with the	LPR ¹²⁷ and several HTR6 polymorphisms ¹²⁸
polymorphisms ¹²⁸ have been associated with	efficacy of this drug. Once again, the olanzapine	have been associated with the efficacy of this
olanzapine's efficacy. However, once again,	response was not associated with HRT2A or	drug. Once again, the olanzapine response was
this olanzapine response was not associated	HRT2C variants in the Indian population. ^{124, 125}	not associated with HRT2A or HRT2C variants
with HRT2A and HRT2C variants in the	A differential response was also observed in	in the Indian population. ^{124, 125} A differential
Indian population. ^{124, 125} A differential	another Asian study with olanzapine, in which	response was also observed in another Asian
response was also observed in another Asian	the haplotype variants rs723672 and rs1034936	study with olanzapine, in which the haplotype
study with olanzapine, showing haplotype	were associated with improvement in positive	variants rs723672 and rs1034936 were
variants rs723672 and rs1034936 associated	symptoms, haplotype variant rs2283271 was	associated with improvement in positive
with improvement in positive symptoms,	associated with improvement in negative	symptoms, haplotype variant rs2283271 was
haplotype variant rs2283271 associated with	symptoms, and haplotype variants rs10848635	associated with improvement in negative
improvement in negative symptoms and	and rs1016388 were associated with	symptoms, and haplotype variants rs10848635
haplotype variants rs10848635 and rs1016388	improvement in general psychopathology. ¹²⁹	and rs1016388 were associated with
associated with improvement in general	These findings further suggest ethnic differences	improvement in general psychopathology. ¹²⁹
psychopathology. ¹²⁹ These findings further	in the response to olanzapine. Patients with	These findings further suggest ethnic
suggest ethnic differences in olanzapine	schizophrenia who had a <i>glutamate metabotropic</i>	differences in the response to olanzapine.
response. Glutamate metabotropic receptor-3	<i>receptor-3</i> (GRM3) polymorphism ¹³⁰ and a	Patients with schizophrenia who had a
(GRM3) polymorphism ¹³⁰ and a calcium	calcium channel variant (CACNAIC,	glutamate metabotropic receptor-3 (GRM3)
channel variant, CACNAIC, rs1006/37 were	rs1006/3/) also exhibited a better response to	polymorphism ¹³⁰ and a calcium channel variant
also associated with better olanzapine response	this drug. ^{129,131}	(CACNA1C, rs1006/3/) also exhibited a better
in schizophrenia patients. ^{127, 131}		response to this drug. ^{127,151}

CITATIONS TO MED-EDITED ARTICLES IN PRINT

Wertman E. Essential new complexity-based themes for patient-centered diagnosis and treatment of dementia and predementia in older people: multimorbidity and multilevel phenomenology. *J Clin Med.* 2024;13:4202. doi/103390/jcm13144202.

Hong, Soon Cheol; Yoo, Sang Wook; Kim, Tak; Yeom, Bom Woo [review]. Prenatal diagnosis of a large subchorionic placental cyst with intracystic hematomas: a case report. *Fetal Diagn Ther.* 2007;22(4):259-263. doi:10.1159/000100786. Epub 2007 Mar 16. PMID: 17369691.

Kim, Pan-Kykeom; Kim, Mi-ryung; Kim, Hyun-Jung; et al. Proteome analysis of the rat hepatic stellate cells under high concentrations of glucose. *Proteomics*. 2007;7(13):2184-2188. doi: 10:1002/pmic.200700051. PMID: 17549797.

Lee, Kyung-Yeol; Lee, Dong-Heon; Kim, Kang, et al. Induction of protective immune responses against the challenge of *Actinobacillus pleuropneumoniae* by the oral administration of transgenic tobacco plant expressing ApxIIA toxin from the bacteria. *FEMS Immunol Med Microbiol*. 2006;48(3):381-389. doi: 10.1111/j.1574-695X.2006.00158.x. Epub 2006 Oct 20. PMID: 17054716.

Shon, Yun-Hee Shon; Nam, Kyung Soo. Chemopreventive effect of protein extract of *Asterina pectinifera* in HT-29 human colon adenocarcinoma cells. *Arch Pharm Res.* 2006;29(3):209-212. doi: 10.1007/BF02969395.